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Abstract
This paper initiates a discrete Hodge theory for cellular

sheaves taking values in a category of lattices and Galois con-
nections. The key development is the Tarski Laplacian, an endo-
morphism on the cochain complex whose fixed points yield
a cohomology that agrees with the global section functor in
degree zero. This has immediate applications in consensus and
distributed optimization problems over networks and broader
potential applications.

1. Introduction

The goal of this paper is to initiate a theory of sheaf cohomology for cellular sheaves
valued in a category of lattices. Lattices are algebraic structures with a rich history
[41] and a wide array of applications [13, 2, 17, 42, 34, 16]. Cellular sheaves are
data structures that stitch together algebraic entities according to the pattern of a
cell complex [43]. Sheaf cohomology is a compression that collapses all the data over
a topological space — or cell complex — to a minimal collection that intertwines with
the homological features of the base space [31].

1.1. Contributions

Our approach is to set up a Hodge-style theory, developing analogues of the com-
binatorial Laplacian adapted to sheaves of lattices. Specific contributions of this work
include the following.

1. In §2, we review posets, lattices, lattice connections, cellular sheaves, and Hodge
theory. It is nontrivial to define cohomology for sheaves valued in the (non-
abelian) category of lattices and connections.

2. In §3.1, we define an endomorphism on cochains of a cellular sheaf of lattices
and begin arguing that this Tarski Laplacian, L, is a reasonable candidate for
a diffusion operator.

3. In §3.2, we prove the main result that (id ∧ L) has fixed point set equal to the
quasi-sublattice of global sections of the sheaf.
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4. In §3.4, we show when the resulting discrete-time harmonic flow projects
arbitrary 0-cochains to global sections.

5. Interpreting global sections as zeroth cohomology of the sheaf, in §3.3 we define
higher Tarski cohomology in terms of fixed points on higher cochains.

6. In §4.2, we compare and contrast this cohomology with that implicit in the
works of Grandis in the case of sheaves of lattices that factor through sheaves
of vector spaces.

7. Finally, in §4.4, we attempt to build a Hodge Laplacian and cohomology theory
directly from a (pseudo) cochain complex, comparing and contrasting with the
Tarski theory.

The results of these inquiries are summarized in Table 1 of §5.

1.2. Motivations

Readers who need no motivation for Hodge-theoretic sheaf cohomology valued in
lattices may skip this subsection.

The authors are motivated by certain problems in data science of a local-to-global
nature, in which multiple instances of local data are required to satisfy constraints
based on a notion of proximity. Such problems often can be formalized in the language
of sheaf theory, where the local data are stored in stalks, and local constraints are
encoded in restriction maps. The cohomology of a sheaf collates global information,
such as global sections and obstructions to such.

Certain sheaves prominent in applications take values in sets. For example, Reeb
graphs can be viewed in terms of global sections of (co)sheaves valued in finite sets
[12, 8]. Other examples arising from problems in quantum computation can be found
in the works of Abramsky et al. [1]. Applications closer to engineering are present in
the pioneering work of Goguen [24] and in more recent work of others [38, 39]. The
lack of a full sheaf cohomology theory in these settings limits applicability.

Recently, there has been substantial activity in cellular sheaves (and dual co-
sheaves), prompted by the thesis of Curry [7]. The theory of cellular sheaves valued
in vector spaces is especially well-developed, and their cohomology is not difficult to
define or compute [18, 9]. Cellular sheaves of vector spaces and their cohomology
have been used in network flow and coding problems [19], persistent homology com-
putation [22], signal processing [37], distributed optimization [27], opinion dynamics
[29], and more.

Our motivation for working with sheaves of lattices stems from both their general-
ity (ranging from lattices of subgroups to Boolean algebras) and broad applicability
in logic, topology, and discrete mathematics. The reader need look no further than
computational topology for recent work harnessing lattice theory (e.g. in computa-
tional Conley theory [30], classifying embeddings factoring through a Morse function
[4], and computing interleavings of generalized persistence modules [3]). The desire
for a Hodge theory comes from more than mere computation of sheaf cohomology. For
a sheaf of vector spaces, the Hodge Laplacian has numerous applications, as detailed
in the thesis of Hansen [26]. As a generalization of the graph Laplacian, the Hodge
Laplacian for sheaves of vector spaces has a rich spectral theory [28] and leads to
notions of harmonic extension that are useful in several contexts [29, 26].



CELLULAR SHEAVES OF LATTICES AND THE TARSKI LAPLACIAN 327

Among the many contingent avenues for applications, one is of special note. Graph
signal processing — the extension of signal processing methods from signals over the
reals to signals over graphs — has of late been a vibrant hive of activity, all based on
the graph Laplacian, and all amenable to the Hodge-theoretic approach to sheaves
over networks. Lifting graph signal processing from real-valued to lattice-valued data
is an intriguing concept, with only the first steps being imagined by Püschel et al., for
functionals on semilattices [36] and powersets [35]. This paper provides the technical
background for establishing graph signal processing valued in lattices. Other poten-
tialities, especially those concerning deep learning and convolutional neural nets wait
in the wings.
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2. Background

The following is terse but sufficient for the remainder of the paper. The reader may
find more detailed references for lattice theory [11, 40, 23], cellular sheaves [7], and
their Hodge theory [28]. There is some variation in terminology among references in
lattice theory. Caveat lector.

2.1. Posets and lattices
A partially ordered set, or poset, is a set P with a binary relation, �, satisfying

reflexivity, x � x, transitivity : x � y and y � z implies x � z, and anti-symmetry :
x � y and y � x implies x = y. Denote a strict partial order, x ≺ y, if x � y, but
y � x.

Given two elements x and y of a poset P, define the meet, x ∧ y, and join, x ∨ y,
to be the greatest lower bound and least upper bound respectively. That is,

x ∧ y = max {z : z � x, z � y} : x ∨ y = min {z : z � x, z � y} .
Likewise, for any subset S ⊆ P, we may define

∧
S and

∨
S whenever they exist.

A lattice is a poset X closed under all finite (possibly empty) meets and joins.
A lattice is complete if all arbitrary meets and joins exist (finite lattices thus being
complete). By this definition, 0 = ∨ ∅ and 1 = ∧ ∅ exist, so that all lattices have
maximal (1) and minimal (0) elements. Such lattices are sometimes called bounded
lattices in the literature: our convention is such that all lattices in this paper are
bounded.

An element x ∈ X is join irreducible if x 
= 0 and x = y ∨ z implies x = y or
x = z. An element x ∈ X is meet irreducible if x 
= 1 and x = y ∧ z implies x = y
or x = z. A lattice can be defined either algebraically or by its partial order. From
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the binary operations join and meet, we can recover the partial order by x � y
⇔ x ∨ y = y ⇔ x ∧ y = x.

For x ∈ P, a poset, define the principal downset of x, ↓x = {y ∈ P : y � x},
and the principal upset of x, ↑x = {y ∈ P : y � x}. A subset D ⊆ P is a downset
if for all x ∈ D, if y � x, then y ∈ D. A subset U ⊆ P is an upset if for all x ∈ U , if
y � x, then y ∈ U .

An interval in a poset is a set, [x, y] = ↓y ∩ ↑x. A sublattice S ⊆ X is a subset
closed under meets and joins, including 0 and 1. It is more common to use a weaker
notion of a sublattice. Define a quasi-sublattice Q ⊆ X to be a subset that is a
lattice in its own right, in particular, not necessarily containing 0 or 1. The product
of a family of lattices {Xα}α∈J is the cartesian product

∏
α∈J Xα with meets and

joins defined coordinate-wise. We denote an element of the product x ∈ ∏
α∈J Xα

and 0 and 1 the bottom and top elements of the product lattice.

In a poset P, we say y covers x, denoted x � y, if x ≺ y and there does not exist
z ∈ P such that x ≺ z ≺ y. A lattice (or poset) X is graded if there exist a ranking
r : X → N such that r(x) < r(y) whenever x ≺ y and r(y) = r(x) + 1 whenever x �
y. For example, given a vector space V , let Gr(V ) be the (Grassmanian) poset of
subspaces of V with the order U � U ′ if U is a subspace of U ′. One may check that
this is a lattice with U ∨W = U +W the subspace sum, and U ∧W = U ∩W the
intersection. For V finite dimensional, Gr(V ) is graded via dimension: r(U) = dim(U).
For another example, let 2S be the powerset lattice of a set, S, ordered by inclusion.
For S finite, this lattice is graded by cardinality: r(U ⊆ S) = #U .

A subset I ⊆ P is a chain if I is totally-ordered. A finite chain I = {x0 ≺ x1 ≺
· · · ≺ x�} is said to have length �. A poset P satisfies the descending chain con-
dition (DCC) if no infinite strictly descending chain exists.

Lemma 2.1. Any graded poset satisfies the descending chain condition.

Proof. The grading of any strictly descending chain is a strictly decreasing sequence
of natural numbers and thus finite.

The height of a poset, denoted h(P), is the length of the maximal chain if it
exists; otherwise, h(P) = ∞. The distance dP(x, y) between x, y ∈ P is defined as
the interval height h ([x, y]). Height is additive under (finite) products.

Lemma 2.2. For {Pi}Ni=1 be a finite family of posets,

h

(
N∏
i=1

Pi

)
=

N∑
i=1

h(Pi). (1)

Proof. It suffices by finite induction to show h(P× P′) = h(P) + h(P′). A maximal
chain of P× P′ projects to maximal chains I and I′ in P and P′ respectively and lies
in the product I× I′. By projection and maximality, its length is �(I) + �(I′).

2.2. The Tarski Fixed Point Theorem

We are especially concerned with maps of lattices f : X → Y. A (poset or) lat-
tice map f is order-preserving if x � x′ implies f(x) � f(x′). A lattice map f
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is join-preserving if f(x ∨ x′) = f(x) ∨ f(x′) and f(0) = 0. Similarly, f is meet-
preserving if f(x ∧ x′) = f(x) ∧ f(x′) and f(1) = 1. If f : X → Y is join preserving,
then it is automatically order-preserving since, if x � x′, then x ∨ x′ = x′ and

f(x) ∨ f(x′) = f(x ∨ x′) = f(x′),

which holds if and only if f(x) � f(x′). The same holds for meet-preserving maps.
An order-preserving map Φ: X → X is expanding if Φ(x) � x and contracting if

Φ(x) � x. The fixed point set of Φ:X → X is the set Fix(Φ) = {x ∈ X : Φ(x) = x}.
The fixed point set can be realized as the intersection of the prefix points
of Φ, Pre(Φ) = {x ∈ X : Φ(x) � x} and the suffix points of Φ, Post(Φ) =
{x ∈ X : Φ(x) � x}.

The critical result about the fixed point set of a lattice endomorphism concerns its
subobject structure within the lattice.

Theorem 2.3 (Tarski Fixed Point Theorem). The fixed point set of an order-pre-
serving endomorphism of a complete lattice is a complete lattice.

The computational complexity of finding a fixed point via queries to Φ is well-
understood [5].

2.3. Galois connections
There is a type of lattice map which interfaces well with categorical methods and

homological algebra. A (Galois) connection between a pair of lattices (X,Y) is an
order-preserving pair, f = (f � , f

�

),

X −−−−→←−−−−
f �

f
�

Y such that f � (x) � y ⇔ x � f
�

(y) for all x ∈ X, y ∈ Y. (2)

One calls f � the lower or left adjoint, and f
�

the upper or right adjoint. One inter-
pretation of a connection is a best approximation to an order inverse, as the following
proposition indicates.

Proposition 2.4. The following are equivalent:

1. f � (x) � y ⇔ x � f
�

(y) for all x ∈ X, y ∈ Y;

2. f
�

f � � idX and f � f
� � idY .

Proof. Suppose f � (x) � y if and only if x � f
�

(y) for all x ∈ X, y ∈ Y. In partic-
ular, by reflexivity, f � (x) � f � (x). Hence, f

�

f � (x) � x for all x ∈ X. Similarly, by
reflexivity, f

�

(y) � f
�

(y). Hence, f � f
�

(y) � y for all y ∈ Y.
Conversely, suppose f

�

f � (x) � x and f � f
�

(y) � y for all x ∈ X, y ∈ Y. If f � (x) �
y, then, since f

�

is order-preserving, f
�

f � (x) � f
�

(y). But, f
�

f � (x) � x which
implies x � f

�

(y) by transitivity. Similarly, if x � f
�

(y), then, since f � is order-
preserving, f � (x) � f � f

�

(y) which implies f � (x) � y since f � f
�

(y) � y.

A category-theoretic interpretation is in order. Viewing a lattice X as a category
with the underlying poset structure defining morphisms, the meet and join opera-
tions are the product and coproduct respectively, 0 is the initial object, and 1 is the
terminal object. Functors between lattices are precisely order-preserving maps and
a connection between lattices is precisely an adjunction. This leads to the following
well-known useful characterization of connections.
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Proposition 2.5. If f = (f � , f
�

), then f � preserves joins and f
�

preserves meets.
Conversely, if f � : X → Y preserves joins, then there exists a map f

�

: Y → X that
preserves meets such that (f � , f

�

) is a connection. Dually, if f
�

: Y → X preserves
meets, then there exists a map f � : X → Y that preserves joins such that (f � , f

�

) is
a connection. Explicitly, these are given as

f
�

(y) =
∨

f−1
� (↓y) and f � (x) =

∧
f
�−1(↑x). (3)

Proof. The first statement follows from the (co)limit-preserving properties of adjunc-
tions. The second statement is a consequence of the Adjoint Functor Theorem. For
completeness, we give a constructive proof in one direction (the other following from
duality). Given f � , it suffices to show by Proposition 2.4 that f

�

f � (x) � x and
f � f

�

(y) � y. We have

f
�

f � (x) =
∨

f−1
� (↓ f � (x)) .

But {x} ⊆ f−1
� f � (x) ⊆ f−1

� (↓ f � (x)) implies

f
�

f � (x) =
∨

f−1
� (↓ f � (x)) �

∨
f−1
� f � (x) �

∨
{x} = x.

For the other inequality, we have

f � f
�

(y) = f �
(∨

f−1
� (↓ y)

)
=

∨
f � f−1

� (↓ y)

since, by the first part, f � preserves joins. Notice, f � f−1
� (↓ y) ⊆ ↓ y. Hence,

f � f
�

(y) =
∨

f � f−1
� (↓ y) �

∨
↓ y = y.

Equation 3 is important for computational purposes as it gives an explicit for-
mula for computing the upper adjoint of a join-preserving map. The complexity of
computing adjoints is a question of interest.

2.4. Categories of lattices

Grandis [25] gives several definitions of categories of lattices that we will find
useful.

Definition 2.6. Let Ltc be the category of lattices and connections. The objects,
ob (Ltc), are lattices. Morphisms are connections,

X −−−−→←−−−−
f �

f
�

Y

denoted as a pair, f = (f � , f
�

). The identity morphism is the connection, X −−−→←−−−
id

id
X.

Composition of arrows

X −−−−→←−−−−
f �

f
�

Y −−−−→←−−−−
g �

g
�

Z

is given by g ◦ f = (g � ◦ f � , f � ◦ g � ).

Often, we desire to work with maps that are not bi-directional in order to form
limits and colimits. Consider the category, Sup, of lattices and join-preserving
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maps. Likewise, consider the category, Inf, of lattices and meet-preserving maps.
We can view these categories as the images of forgetful functors,

U : Ltc → Sup : V : Ltcop → Inf (4)

given by the identity on objects and U : (f � , f
�

) � f � and V : (f � , f
�

) � f
�

on
morphisms. For complete lattices, there are corresponding full subcategories, cLtc,
cSup, and cInf.

There are two other important subcategories of Ltc: the distributive and the
modular lattices,

Dlc ⊂ Mlc ⊂ Ltc.

A lattice, X, is modular if for x, y ∈ X,

x � y ⇒ x ∨ (z ∧ y) = (x ∨ z) ∧ y

for all z ∈ X, whereas it is distributive if for x, y, z ∈ X,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

or dually,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A distributive lattice satisfies the modular identity. A connection f = (f � , f
�

) is left
exact if f

�

f � (x) = x ∨ f
�

(0) and is right exact if f � f
�

(y) = y ∧ f � (1). An exact
connection is one which is both left and right exact. The category Mlc consists of
modular lattices with exact connections, while Dlc is given by distributive lattices and
exact connections. Note that the subcategories Mlc and Dlc are not full subcategories
of Ltc, but Dlc is a full subcategory of Mlc.

2.5. Cellular sheaf theory
Our goal is to set up and work with cellular sheaves of lattices. A sheaf is a type

of data structure, built for the aggregation of local data and constraints into global
solutions. The subject of sheaf theory is rich and technically intricate [31, 32, 33],
but in recent years, a discrete version adapted to posets from cell complexes has been
shown to be useful in a number of applications [7]. We therefore present a simple
overview of the cellular theory.

It is assumed that the reader is familiar with the definition of a cell complex:
these are slightly more general than simplicial complexes, and not quite as general
as CW-complexes [45]. A cell complex X is filtered by its k-skeleta X(k), for k ∈ N,
where X(0) is the vertex set. We write Xk for the set of all k-cells in X, where we
identify each cell σ with its image in X(k).

Let Fc(X) denote the face poset of a cell complex X given by the transitive-
reflexive closure of the relation: σ � τ if σ is a face of τ . Every cell σ of X has:

1. boundary, ∂σ = {ρ : ρ � σ}; and
2. coboundary, δσ = {τ : τ � σ}.

It is helpful to regard the face poset as a category for what follows.
Cellular sheaves attach data to cells, glued together according to the face poset.

A cellular sheaf taking values in a complete category D is simply a functor
F : Fc(X) → D. Explicitly, F attaches to each cell σ of X an object, Fσ, called the
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stalk over σ. For pairs σ � τ , F prescribes restriction maps, Fσ�τ : Fσ → Fτ , so
that for ρ � σ � τ ,

1. Fσ�σ = idFσ

2. Fσ�τ ◦ Fρ�σ = Fρ�τ .

The reader familiar with sheaves over topological spaces should think of a cellular
sheaf as a discrete version, using the nerve of a locally-finite collection of open sets
as the cell complex.

Sheaves describe consistency or consensus relationships between data, programmed
via the restriction maps: this perspective has generated applications in flow networks
[20], sensing [21], opinion networks [29], and distributed optimization [27]. The cat-
egory of cellular sheaves over a cell complex X valued in D, denoted ShX (D), has
as objects sheaves, F , and as morphisms, natural transformations η : F → G. Inverse
and direct images, (sometimes) tensor products, and other operations can be defined
[28, 7].

In a given sheaf, the transition from local restrictions to global satisfaction is
coordinated via the global section functor. The (global) sections of F , denoted
Γ(X;F), is the limit

Γ(X;F) = lim (F : Fc(X) → D) .

There is an explicit description in terms of assignments of data to 0-cells that agree
over 1-cells:

Γ(X;F) =

{
x ∈

∏
v∈X0

Fv : ∀ v � e � w, Fv�e(xv) = Fw�e(xw)

}
. (5)

For cellular sheaves taking values in an abelian category, sheaf cohomology is
straightforward. One forms the cochain complex (C•, δ•), where

Ck(X;F) =
∏

dimσ=k

Fσ

are the k-cochains and the sheaf coboundary map δ : Ck(X;F) → Ck+1(X;F) is given
by

(δx)τ =
∑
σ�τ

[σ : τ ]Fσ�τ (xσ), (6)

where [σ : τ ] = ±1 is an incidence number determined by a choice of orientation
on cells of X. The cohomology is then Hk(X;F) = Ker δ/Im δ. In degree zero, this
computes the global sections via a natural isomorphism. Cellular sheaf cohomology
has proven useful in a number of settings of late [19, 20, 21, 29], and it is our goal
to extend such to the setting of sheaves of lattices.

2.6. Cellular Hodge theory
The Hodge Theorem for Riemannian manifolds is a well-known example of the

topological content of the Laplacian on differential forms: the kernel of the Laplacian
gives the de Rham cohomology, which is isomorphic to the singular compactly sup-
ported cohomology with real coefficients [44]. There are simple combinatorial versions
of Hodge theory for cell complexes [15], which in its most stripped-down cartoon form
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implies the widely-known fact that the kernel of the combinatorial graph Laplacian
has dimension equal to the number of connected components of the graph [6].

There is a richer variant of combinatorial Hodge theory for cellular sheaves of
inner-product spaces [28]. Given a cell complex X and a cellular sheaf F on X taking
values in the category of inner product spaces and linear transformations, one has a
well-defined sheaf cohomology as per the previous subsection. The coboundary map
δ from (6) has an adjoint δ∗ given by taking the linear adjoint of each restriction map
Fσ�τ . The resulting Hodge Laplacian of F is given by

L = δ∗δ + δδ∗. (7)

This specializes to the combinatorial graph Laplacian in the case of a constant sheaf
over a cell complex.

There is a very nice Hodge theory for sheaves of finite-dimensional real vector
spaces, beginning with the observation that the kernel of L is isomorphic to the sheaf
cohomology. The Hodge Laplacian is symmetric and positive semidefinite, endowing
the cochain complex with a quadratic form 〈·, L·〉 which, e.g., gives a measure of
how close a cochain in C0 is to being a global section. More is possible, including a
generalization of spectral graph theory to the setting of sheaves [28] via the spectral
data of L, as well as the application of diffusion dynamics via L to compute sheaf
cohomology [28]. It is the latter that we wish to generalize to sheaves of lattices.

3. The Tarski Laplacian

3.1. Definition and properties
Let F : Fc(X) → Ltc be a lattice-valued sheaf on a cell complex, X. The restriction

maps for cells σ � τ are therefore connections of the (notationally awkward) form

Fσ�τ = ((Fσ�τ ) � , (Fσ�τ )
�

).

The 0-cochains C0(X;F) are choices of data on vertex stalks. There is a sensible
definition of a Laplacian which mimics the Hodge Laplacian for sheaves of vector
spaces. Given the role that the Tarski Fixed Point Theorem plays in what follows, it
seems fitting to call this novel Laplacian by his name.

Definition 3.1. The Tarski Laplacian for F : Fc(X) → Ltc is the lattice map
L : C0(X;F) → C0(X;F) given by

(Lx)v =
∧
e∈δv

(Fv�e)
�

( ∧
w∈∂e

(Fw�e) � (xw)

)
. (8)

This Laplacian, like the Hodge Laplacian of a cellular sheaf, defines a diffusion
process in which information propagates via sheaf restriction maps.

Lemma 3.2. The Tarski Laplacian decomposes into two parts,

(Lx)v =

⎛
⎜⎝ ∧

e∈δv

(Fv�e)
�

(Fv�e) � (xv)

⎞
⎟⎠

︸ ︷︷ ︸
expanding

∧

⎛
⎜⎜⎝ ∧

e∈δv
w∈∂e−{v}

(Fv�e)
�

(Fw�e) � (xw)

⎞
⎟⎟⎠

︸ ︷︷ ︸
mixing

. (9)
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Proof. The map (Fv�e)
�

(Fv�e) � � idFv
is expanding by Proposition 2.4 while

(Fv�e)
�

preserves meets by Proposition 2.5.

Information is propagated across the 1-skeleton of X as a combination of mixing
with neighboring states and expanding the local state, taking the meet of all opera-
tions. Since our lattices do not have weights, mixing and expansion are given equal
priority.

Lemma 3.3. The Tarski Laplacian L is order-preserving on the product poset
C0(X;F).

Proof. Suppose x � y in C0(X;F). Then,

(Fw�e) � (xw) � (Fw�e) � (yw)

since F � is join-preserving, hence, order preserving. This implies∧
w∈∂e

(Fw�e) � (xw) �
∧

w∈∂e

(Fw�e) � (yw),

which, since F �

is meet-preserving and thus order-preserving, implies

(Fv�e)
�

( ∧
w∈∂e

(Fw�e) � (xw)

)
� (Fv�e)

�

( ∧
w∈∂e

(Fw�e) � (yw)

)
.

This is turn implies

∧
e∈δv

(Fv�e)
�

( ∧
w∈∂e

(Fw�e) � (xw)

)
�

∧
e∈δv

(Fv�e)
�

( ∧
w∈∂e

(Fw�e) � (yw)

)
.

Hence, (Lx)v � (Ly)v for every v.

3.2. A Fixed Point Theorem
Although the Tarski Laplacian as defined has the feel of a diffusion-type operator

(Lemma 3.2), confirmation of its fitness as a Laplacian would be welcome. We provide
such in the form of a Hodge-type theorem in grading zero.

Recall the setting of a cellular sheaf F of inner-product spaces on X with Hodge
Laplacian L [28]. The fact that in degree zero Ker L = H0(X;F) = Γ(X;F) means
that the heat equation on C0(X;F),

dx

dt
= −αLx ; α > 0,

sends 0-cochains asymptotically to the nearest global section as t → +∞. Discretizing
this in time yields a discrete-time system

xt+1 = (id− ηL)x ; η > 0. (10)

This system likewise converges asymptotically to Fix(id− L): harmonic 0-cochains,
global sections.

To derive a similar result on the dynamics of cochains on Ltc-valued cellular
sheaves, it will be necessary to use a discrete-time diffusion, given the nature of
lattices. In addition, it will be necessary to forget some of the structure of the full
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Ltc-sheaf and reduce from F to F = U ◦ F using the forgetful functor of (4). This
makes possible a fixed point description of Γ(X;F) using an analogue of (10).

Lemma 3.4. For L the Tarski Laplacian, (id ∧ L)x = x is equivalent to Lx � x.

Proof. By definition.

Theorem 3.5. Let F be a Ltc-valued cellular sheaf on X and L its Tarski Laplacian.
Then,

Fix (id ∧ L) = Γ(X;F). (11)

Proof. Via Lemma 3.4, suppose x ∈ Γ(X;F). Then, every term in
∧

w∈∂e(Fw�e) � (xw)
is equal by the description of global sections in (5). By Proposition 2.4,

(Fv�e)
�

(Fv�e) � (xv) � xv

for every cobounding edge e. Hence,

(Lx)v =
∧
e∈δv

(Fv�e)
�

(Fv�e) � (xv) � xv,

and we conclude that global sections x satisfy Lx � x.
For the converse, suppose (Lx)v � xv for every v ∈ X0. Then, for every vertex v

and cobounding edge e ∈ δv,

(Fv�e)
�

( ∧
w∈∂e

(Fw�e) � (xw)

)
�

∧
e∈δv

(Fv�e)
�

( ∧
w∈∂e

(Fw�e) � (xw)

)
� xv.

Again, by Proposition 2.4,∧
w∈∂e

(Fw�e) � (xw) � (Fv�e) � (xv),

which in turn implies for each w ∈ ∂e,

(Fw�e) � (xw) � (Fv�e) � (xv). (12)

Reversing the roles of v and w gives, via the same argument, a reversed inequality,
so that

(Fv�e) � (xv) = (Fw�e) � (xw),

proving that x ∈ Γ(X;F).

Corollary 3.6. For F as in Theorem 3.5, Γ(X;F) = Post(L).

Proof. Lemma 3.4 combined with Theorem 3.5.

Corollary 3.7. For F as in Theorem 3.5, with every vertex stalk complete, the limit

lim
(
Fc(X)

F−−→ cSup
)
= Γ(X;F) (13)

exists and is a (nonempty) complete quasi-sublattice of C0(X;F).

Proof. By Lemma 3.3, L is order-preserving which implies id ∧ L is order-preserving.
The Tarski Fixed Point Theorem (Theorem 2.3) and Theorem 3.5 complete the proof.
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Note that Corollary 3.7 is strictly stronger than the existence of

lim (F : Fc(X) → cSup) .

Since Γ(X;F) is a complete quasi-sublattice, arbitrary joins and meets of global sec-
tions exist, and, in particular, there are unique maximum and minimum global sec-
tions, even when C0(X;F) is not finite.

Example 3.8. For X a 1-dimensional cell complex (a graph), the combinatorial graph
Laplacian [6] can be seen as the Hodge Laplacian of the constant sheaf of a fixed
vector space. As an endomorphism on C0(X), the graph Laplacian has kernel equal
to the (locally) constant 0-cochains, and its dimension is the number of connected
components of the graph.

What is the Tarski analogue? Consider the constant sheaf on X whose stalks
are all a fixed lattice with all restriction maps the identity. The Tarski Laplacian
performs a local meet with neighbors. In this case, too, the harmonic 0-cochains are
precisely those which are (locally) constant. The Tarski Laplacian generalizes the
graph Laplacian.

3.3. Tarski cohomology

Theorem 3.5 gives an argument for the Tarski Laplacian as the “right” definition
for Ltc-valued sheaves; however, it only applies in grading zero. This is due to the
difficulty of defining a natural non-abelian sheaf cohomology for Ltc-valued sheaves
(see §4.2–4.3). Realizing the zeroth cohomology – the global sections – in terms of a
fixed point theorem points the way to a general cohomology theory fitted to lattice-
valued sheaves.

Theorem 3.5 and Corollary 3.7 inspire the following definitions: in what follows, X
is a cell complex and F a Ltc-valued cellular sheaf on X.

Definition 3.9. The Tarski Laplacian in degree k is the lattice map,

Lk : C
k(X;F) −→ Ck(X;F)

acting on a k-cochain x and k-cell σ via

(Lkx)σ =
∧

τ∈δσ

(Fσ�τ )
�

( ∧
σ′∈∂τ

(Fσ′�τ ) � (xσ′)

)
. (14)

The map Lk is seen to be order-preserving by the same argument as in the proof
of Lemma 3.3.

Definition 3.10. The Tarski cohomology, TH•(X;F), of a cellular sheaf F valued
in Ltc is

THk(X;F) = Fix(id ∧ Lk) = Post(Lk). (15)

Lemma 3.11. If F is valued in complete lattices and connections, cLtc, then
THk(X;F) is a (non-empty) complete quasi-sublattice of Ck(X;F).

Proof. This follows immediately from the Tarski Fixed Point Theorem.
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3.4. Harmonic flow
Fixed point theorems come in implicit [Brouwer, Lefschetz] and explicit [Banach]

forms. Theorem 3.5 gives a fixed-point description of global sections which, along
with higher Tarski cohomology, can be made constructive via diffusion dynamics –
using the Laplacian to define a discrete-time heat equation on cochains.

Definition 3.12. Define the harmonic flow Φ: N× C•(X;F) → C•(X;F) as Φt =
Φ(t, ·) = (id ∧ L)t.

We say that cochain x converges with respect to harmonic flow, writing x → x∗,
if there exist T � 0 such that ΦT (x) = ΦT+t(x) for all t ∈ N. Then, x → x∗ if and
only if x∗ ∈ Fix(id ∧ L) = Post(L) = TH•(X;F).

Theorem 3.13. Let F be a Ltc-valued sheaf on a cell complex X such that (1) the
number of k-cells is finite, and (2) the stalks over the k-cells satisfy the descending
chain condition (DCC). Then, for some finite t > 0, Φt is a projection map from C•

to TH•.

Proof. Since each time-step of Φ involves a meet with id, an orbit of Φ is either
descending or eventually fixed. The hypotheses ensure finite termination of all initial
conditions.

This implies that finite or ranked stalks suffice to guarantee global finite-time
convergence of the harmonic flow. Optimal bounds on the number of iterations is an
interesting question; naive bounds given by heights of stalks are an exercise left to
the reader. An in-depth study of the convergence properties of the Tarski Laplacian
may very well imply a notion of an eigenvector/eigenvalue of a lattice endomorphism.

4. Towards Hodge cohomology

Given a cellular sheaf of lattices F over X, it would be satisfying to have a cochain
complex (C•(X;F), δ) with sheaf cohomology from which a classical Laplacian L =
δ∗δ + δδ∗ could be defined and showed isomorphic to the Tarski cohomology of §3.3.
This section works to that end, following certain techniques introduced by Grandis
[25].

4.1. Homological algebra of lattices
Sheaves taking values in Ltc have enough structure to do cohomology. In Ltc,

the zero morphism, (0 � , 0
�

) : X → Y, is the connection where 0 � : X � 0 and
0
�

: Y � 1. A morphism f : X → Y has kernel and cokernel given by equalizer and
coequalizer respectively:

Ker f X Y

X Y Cok f

ker f f

0

f

0

cok f

.

In Ltc, one checks that these satisfy

Ker f = ↓f �

(0) = {x ∈ X : f � (x) = 0} ,
Cok f = ↑f � (1) = {y ∈ Y : f

�

(y) = 1} .
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For a morphism f , define its normal image by the connection, ker(cok f), and
the quasi-sublattice,

Nim f = ↓f � (1).
The categorial product in Ltc is the cone

X X
∏

Y Y,
p q

(16)

where X
∏

Y is the cartesian-product lattice, and where p � (x, y) = x, p
�

(x) = (x, 1),
and q � (x, y) = y, q

�

(y) = (1, y). The coproduct is the cocone

X X
∐

Y Y,i j
(17)

where X
∐

Y is again the cartesian-product lattice, and where i � (x) = (x, 0),
i
�

(x, y) = x, and j � (y) = (0, y), j
�

(x, y) = y.
Recall that a semi-additive category is a pointed category with a biproduct,

denoted ×: a special product that is compatible with the coproduct and coincides
with the coproduct on objects. The category Ltc is semi-additive; compatibility is
satisfied, as p ◦ i = id and q ◦ j = id, as well as p ◦ j = 0 and q ◦ i = 0. The objects
X

∏
Y and X

∐
Y coincide by definition.

Lemma 4.1. Semi-additive categories are enriched in abelian monoids.

Proof. The diagonal (Δ) and codiagonal (∇) morphisms come out of the product
and coproduct respectively. For f, g ∈ Hom(X,Y), f + g is the composition in the
diagram

X X×X Y ×Y YΔ

f+g

f×g ∇ . (18)

We leave the details of showing f + g = g + f and f + 0 = f as an exercise to the
reader.

Corollary 4.2. In Ltc, Δ is the connection, Δ � (x) = (x, x), Δ
�

(x, x′) = x ∧ x′, and
∇ is the connection, ∇ � (y, y′) = y ∨ y′, ∇ �

(y) = (y, y). Furthermore, f + g is the
following connection:

(f + g) � (x) = f � (x) ∨ g � (x),

(f + g)
�

(y) = f
�

(y) ∧ g
�

(y).

We denote sums of connections by f + g and
∑

α fα as appropriate.

4.2. Grandis cohomology
With this in place, one can examine the category of bounded cochain complexes

(C•, δ) valued in Ltc, denoted Ch+(Ltc), and define a cohomology. This is implicit in
the work of Grandis [25]; we fill in certain details for clarity.

As with ordinary cohomology, define the cocycles and coboundaries of a cochain
complex valued in Ltc by Z• = Ker δ and B• = Nim δ respectively. (For simplicity,
we omit the grading superscript on the coboundary operator; in the remainder of this
section, the reader should be careful when specifying to a particular grading.)
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Lemma 4.3. There is an order inclusion of coboundaries into cocycles.

Proof. Suppose x is a boundary, so that x � δ � (1) and δ � (x) � δ � δ � (1) = 0 as
δ ◦ δ = 0.

Definition 4.4. The Grandis cohomology of (C•, δ) ∈ Ch+(Ltc) is

GH•(C•) = Cok (B• ↪→ Z•). (19)

Grandis cohomology is best computed as an interval.

Proposition 4.5. GH• is isomorphic to [δ � (1), δ
�

(0)].

Proof. Let x ∈ Cok (B• ↪→ Z•) so that x � δ � (1). Simultaneously, x � δ
�

(0) as x ∈
Ker δk.

4.3. Passing from vector spaces to subspace lattices
The problem with defining a sheaf cohomology for sheaves valued in Ltc lies in the

definition of the coboundary map: for ordinary sheaf cohomology of sheaves valued in
Vect, the abelian structure is vital to defining δ. However, if one begins with a sheaf
valued in Vect, then it is possible to pass to Ltc via a Grassmannian — converting all
vector space data to the lattice of subspaces. This is an interesting class of sheaves
and, though not universal, does provide an arena in which to compare different sheaf
cohomologies.

Denote by Gr the transfer functor, Gr(·) : Vec → Mlc, which converts vector
spaces and linear transformations to (modular) lattices of subspaces and exact con-
nections, where, for a linear transformation A, Gr(A) � is the image and Gr(A)

�

is the inverse image. By abuse of notation, this extends to chain complexes in the
appropriate categories as well. This transfer functor respects cohomology.

Theorem 4.6. For C• a cochain complex valued in Vect,

GH• (Gr(C•)) ∼= Gr (H•(C•)) . (20)

Proof. That Gr (·) is a functor is left as an exercise. It is clear that a connection
induced by the coboundary maps in C• is (1) exact and (2) a coboundary map in
Gr(C•). By Proposition 4.5,

GHk (Gr(C•)) ∼= [Gr(δ) � (1),Gr(δ)
�

(0)]

= [Im δ,Ker δ] .

Then, by the Fourth Isomorphism Theorem [14][p. 394],

[Im δ,Ker δ] ∼= Gr (Ker δ/Im δ) .

In the case of a sheaf F of vector spaces over X, we can pass to F = Gr(F), the
induced sheaf taking values in Mlc via subspaces.

Corollary 4.7. For F = Gr(F) a sheaf of lattices induced by a sheaf of vector spaces,
GH• (X;F) ∼= Gr (H•(X;F)).

For such sheaves, the relationship between the Tarski-based and Grandis-based
cohomologies is as follows:
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Proposition 4.8. For sheaves of the form F = Gr(F), the zeroth Grandis cohomology
is a quasi-sublattice of the zeroth Tarski cohomology.

Proof. If x is a subspace in GH0(X;F), then by Corollary 4.7, x is a subspace of
Γ(X;F) = H0(X;F). In turn, this means that the images of x under the restriction
maps Fv�e, Fw�e will coincide for every v, w ∈ ∂e so that x ∈ Γ(X;F) = TH0(X;F).

The inclusion is strict. Consider a twisted sheaf F of 1-dimensional stalks as in
Fig. 1. Then, the lattice-valued sheaf F = Gr(F) is constant: the stalks are the lat-
tice L = {0, 1}, and the restriction maps are all the identity. Hence, TH0(X;F) ∼= L.
However (as the reader may calculate), H0(X;F) ∼= 0, as there are no nonzero global
sections. By Theorem 4.6, GH0(X;F) ∼= 0.

Figure 1: A twisted sheaf (left) demonstrates strict inclusion TH0 � GH0 due to the
absence of a nonzero section (right).

4.4. A Hodge complex
Sheaves of lattices do not generically factor through the transfer functor. For such

sheaves, can their cohomology be read off of a cochain complex via Grandis cohomol-
ogy? This is unclear if not unlikely. We therefore pursue a philosophically disparate
lattice sheaf cohomology mimicking the Hodge theory for vector-valued sheaves. We
define a pseudo-coboundary connection δ̃ : C•(X;F) → C•+1(X;F) given by a sum
of projections composed with restriction maps: sums naturally arise from the semi-
additive structure on Ltc; projections onto a stalk (Fσ) over a k-cell (σ ∈ Xk) are
connections,

πσ : C
k(X;F) → Fσ : (πσ) � (x) = xσ, (πσ)

�

(xσ) = (1, . . . , 1, xσ, 1, . . . , 1).

Definition 4.9. Let F be a sheaf valued in Ltc with cochains C•(X;F) per usual.
The pseudo-cochain connections of F are the sequence of connections

δ̃ : C•(X;F) → C•+1(X;F)

given by

(δ̃x)τ =

⎛
⎝∑

σ�τ

Fσ�τ ◦ πσ

⎞
⎠ (x) . (21)

The pseudo-cochain complex of F is the lattice of cochains C•(X;F) together
with the pseudo-cochain connections of F .
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The connection δ̃ is not a true coboundary as δ̃ ◦ δ̃ 
= 0 in general. As a consequence,
a lattice of coboundaries is not a quasi-sublattice of cycles (Lemma 4.3) and Grandis
cohomology is not well-defined. However, as connections come with adjoints built-in,
a Hodge-like Laplacian may still be defined.

Definition 4.10. For (C•,δ) a (bounded) cochain complex in Ltc, theHodge Lapla-
cians are the pair L+, L− : C• → C• of order-preserving degree-zero maps

L+
k = δ

�

δ � : L−
k = δ � δ

�

. (22)

As with the cellular (combinatorial) Hodge Laplacian, one calls L+ the up-Laplacian
and L− the down-Laplacian.

For example, the Hodge Laplacians of sheaves factoring through the transfer func-
tor are readily calculated:

Proposition 4.11. For F = Gr(F) and Gr(C•, δ) its sheaf cochain complex, the Hodge
Laplacians are computed via

L+x = x ∨Ker δ : L−x = x ∧ Im δ.

Proof. As Gr(δ) is an exact connection,

δ
�

δ � (x) = x ∨ δ
�

(0) : δ � δ
�

(x) = x ∧ δ � (1).

Here, δ
�

0 is the preimage of the zero vector space (the kernel) and δ � 1 is the direct
image of the entire space (the image).

More generally, we may compute the Hodge Laplacians of the pseudo-cochain
complex for an arbitrary lattice-valued sheaf. By slight abuse of notation, substitute
the pseudo-coboundary δ̃ of (21) into the definition of the up- and down-Laplacians
of (22).

Proposition 4.12. Let F be a sheaf valued in Ltc and (C•, δ̃) its pseudo-cochain
complex. Then, the Hodge Laplacians (L+ = δ̃

�

δ̃ � , L− = δ̃ � δ̃
�

) are computed as

(L+x)σ =
∧

τ∈δσ

(Fσ�τ )
�

( ∨
σ′∈∂τ

(Fσ′�τ ) � (xσ′)

)
, (23)

(L−x)σ =
∨

ρ∈∂σ

(Fρ�σ) �

⎛
⎝ ∧

σ′∈δρ

(Fρ�σ′)
�

(xσ′)

⎞
⎠ . (24)

Proof. The definitions, Corollary 4.2, and a few minor details suffice.

A return to the fixed point perspectives of §3 suggests yet another candidate for
Ltc-valued sheaf cohomology.

Definition 4.13. For the pseudo-cochain complex of F as above, the upper- and
lower-Hodge cohomology lattices of F are

+HH
•(X;F) = Post(L+), (25)

−HH•(X;F) = Pre(L−). (26)
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As a compression of cochains, this Hodge cohomology is less efficient than Tarski
cohomology.

Proposition 4.14. Tarski cohomology is a quasi-sublattice of upper-Hodge cohomol-
ogy.

Proof. Suppose x ∈ THk(X;F) and σ � τ � σ′ is a pair of k-cell faces of a common
(k + 1)-cell τ . Then, following the proof of Theorem 3.5, one has

(Fσ�τ ) � (xσ) �
∧

σ′∈∂τ

(Fσ′�τ ) � (xσ′) � (Fσ′�τ ) � (xσ′).

By symmetry of σ � τ � σ′, this implies (Fσ�τ ) � (xσ) = (Fσ′�τ ) � (xσ′). Then,

∧
τ∈δσ

(Fσ�τ )
�

( ∨
σ′∈∂τ

(Fσ′�τ ) � (xσ′)

)
=

∧
τ∈δσ

(Fσ�τ )
�

(Fσ�τ ) � (xσ) � xσ

so that x ∈ +HH
k(X;F).

For an explicit example where Tarski cohomology is strictly contained in upper-
Hodge cohomology, consider a constant sheaf on X, a connected graph with three
vertices (u, v, w) and two edges (u ∼ v, v ∼ w). The Tarski Laplacian is the endomor-
phism

L0x = (xu ∧ xv, xu ∧ xv ∧ xw, xv ∧ xw) ;

the upper-Hodge Laplacian is the endomorphism

L+
0 x = (xu ∨ xv, (xu ∨ xv) ∧ (xv ∨ xw), xv ∨ xw) .

TH0 is the lattice of constant sections. To see that TH0 � +HH
0, consider cochain x =

(x, y, x) such that y ≺ x. Then, L+
0 x = (x, x, x) � x. Thus, x ∈ Post(L+

0 ) = +HH
0,

but is not a constant section.

5. Summary

We close with Table 1, summarizing our constructions for cellular sheaves of lat-
tices. The Grandis cohomology – which is defined only when there is a cochain com-
plex, such as in the case of factoring through Vec — is the “smallest” cohomology,
followed by the Tarski and then the Hodge theories:

GH• ⊂ TH• ⊂ +HH
•. (27)

symb. target coboundary, (δkx)τ cohomology Laplacian, (L±
k x)σ

Cellular Hk Hilb
∑

σ�τ [σ : τ ]Fσ�τ (xσ) Ker δk/Im δk−1

(
δ∗kδk + δk−1δ

∗
k−1

)
σ

Tarski THk Ltc Post(Lkx)
∧

τ∈δσ(Fσ�τ )
�
(∧

σ′∈∂τ (Fσ′�τ ) � (xσ′)
)

Grandis GHk Mlc* Gr(δ) Gr
(
Hk(X;F)

)
xσ ∨ (Ker δk)σ
xσ ∧ (Im δk−1)σ

Hodge +HH
k Ltc

(∑
σ�τ Fσ�τ ◦ πσ

)
(x) Post(L+

k )
∧

τ∈δσ(Fσ�τ )
�
(∨

σ′∈∂τ (Fσ′�τ ) � (xσ′)
)

−HHk Pre(L−
k )

∨
ρ∈∂σ(Fρ�σ) �

(∧
σ′∈δρ(Fρ�σ′)

�

(xσ′)
)

Table 1: Cohomologies and their Laplacians for cellular sheaves of lattices.
*Grandis cohomology is defined for sheaves valued in Mlc whenever Mlc factors through Vec.
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